Linear transformations that preserve the permanent

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On certain semigroups of transformations that preserve double direction equivalence

Let TX be the full transformation semigroups on the set X. For an equivalence E on X, let TE(X) = {α ∈ TX : ∀(x, y) ∈ E ⇔ (xα, yα) ∈ E}It is known that TE(X) is a subsemigroup of TX. In this paper, we discussthe Green's *-relations, certain *-ideal and certain Rees quotient semigroup for TE(X).

متن کامل

on certain semigroups of transformations that preserve double direction equivalence

let tx be the full transformation semigroups on the set x. for an equivalence e on x, let te(x) = {α ∈ tx : ∀(x, y) ∈ e ⇔ (xα, yα) ∈ e}it is known that te(x) is a subsemigroup of tx. in this paper, we discussthe green's *-relations, certain *-ideal and certain rees quotient semigroup for te(x).

متن کامل

Do Linear Transformations Preserve Fuzzy Linear Independence? Some Examples

In this paper, we examine whether basic linear transformations in R 2, such as rotations, scales, etc, preserve fuzzy linear independence. We provide some examples to the contrary. Mathematics Subject Classification: 08A72, 03E72

متن کامل

On Transformations of Interactive Proofs that Preserve the Prover's Complexity

Goldwasser and Sipser [GS89] proved that every interactive proof system can be transformed into a public-coin one (a.k.a., an Arthur–Merlin game). Their transformation has the drawback that the computational complexity of the prover’s strategy is not preserved. We show that this is inherent, by proving that the same must be true of any transformation which only uses the original prover and veri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1967

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1967-0213376-6